
INTERNAL

Hunting for macOS Logic Bugs:
Logic not Included!
Max K - WithSecure
Beacon C2 2024

INTERNAL

• Introduction: who?, when?, what?, why?

• CVE-2024-?????: ZCC NSXPC LPE macOS

• CVE-2024-30165: AWS VPN XPC LPE macOS

• CVE-2024-27358: WithSecure Elements / MDR Installer LPE

• “Unexploitable” Logic Bugs: Two miscellaneous logic bugs

Agenda

INTERNAL

• Security Consultant at WithSecure
- My opinions are my own and don’t represent my employers

• OS Security, Build Reviews, Thick Clients, Compiled Software,
Code Review, AppSec, Reverse Engineering, Logic Bugs, Tool
Development...

• OSMR, CRTO, OSCP, CPSA, S7, OST2…

• x33fcon, BSides, DC4420...

• Did some bug hunting, found some bugs

Who?

INTERNAL

When?

INTERNAL

WithSecure™ Labs

https://labs.withsecure.com/vulnerability-disclosure-policy

INTERNAL

What is a "logic bug"

Its all about breaking assumptions

INTERNAL

What?

INTERNAL

• High exploit reliability

• Trust on processes and procedures

• Breaking unverified assumptions

• E.g.
• Redirect privileged file operations
• Bypassing symlink checks with hardlinks
• Assuming a client app to a privileged component is the intended app
• Executing Mach-Os / Scripts at an assumed safe path
• Changing permissions at an assumed safe path
• Deleting / Creating files at an assumed safe path

• "Oh, we can assume that this file exists" or "Oh, the client is going to be trusted, its signed by us!"

Logic Bugs?

INTERNAL

• These bugs still exist

• People often show the bug but not the process

• Story / walkthrough of how I identified and exploited the bugs

• How to build a methodology / automate steps

• Responsible Disclosure process is a little grey

Why?

INTERNAL

CVE-2024-?????:
ZCC Local Privilege Escalation

A weakness in one of the signed components which facilitated
dylib injection and communication with a protected NSXPC
LaunchDaemon. LPE in the form of root code execution was
achieved through abuse of an install / update function exposed by
the NSXPC service.

INTERNAL

• Zscaler Client Connector for 3rd party non-managed devices

• Posture Policies (won’t cover these)

• 5 days on Windows, 5 days on macOS

• PoCs, risk demonstrated, extra time to do some vulnerability research on the targets

• Couple of macOS components rang alarm bells

• Found some bugs (will cover one of the LPEs)

It all started with a client project

INTERNAL

Identify processes
& their privileges

Identify LaunchDaemons

Investigate LaunchDaemons

INTERNAL

MachServices:
the launchd job can use XPC (either the
low-level C API or NSXPCConnection) to
listen for connections to that service.

ProgramArguments:
The actual daemon itself, handles

com.zscaler.service

INTERNAL

MachServices:
the launchd job can use XPC (either the
low-level C API or NSXPCConnection) to
listen for connections to that service.

ProgramArguments:
The actual daemon itself, handles

com.zscaler.tunnel

INTERNAL

• TL;DR you can't just run unsigned code in signed processes if SIP is enabled

• No dylib planting/sideloading whatever you want to call it

• No attaching a debugger

• Unless…they disable security features on executables

• Or…through "vulnerable" entitlements

Quick intermission to talk about SIP

https://developer.apple.com/documentation/bundleresources/entitlements

INTERNAL

Nothing of real interest :/

Nothing of real interest :/

INTERNAL

com.apple.security.cs.allow-dyld-environment-variables

com.apple.security.cs.disable-library-validation

Identifier=com.zscaler.tunnel

INTERNAL

Automation is our friend, saves us
time / repeating activities

Can use YARA to scan for Mach-Os
and strings in found Mach-Os
which relate to entitlements

INTERNAL

[NS]XPC – Dividing privilege levels

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html

INTERNAL

[NS]XPC – Learn to talk before you can walk

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html

INTERNAL

Connecting

Custom client: NSXPCConnection

1. Call initWithMachServiceName

2. interfaceWithProtocol ?

What do we connect to?

ZscalerService: NSXPCListener

com.zscaler.service-tray-communication

INTERNAL

ZscalerService shouldAcceptNewConnection

com.zscaler.tunnel:
TunnelXPCProtocol
XPCProtocol

com.zscaler.zscaler:
TrayXPCProtocol
XPCProtocol

com.zscaler.zscaler.pktfilter
FilterXPCProtocol
XPCProtocol

INTERNAL

class-dump bug ?

???

???

???

INTERNAL

???

???

???

INTERNAL

Interesting

TunnelXPCProtocol – class-dump-swift

INTERNAL

XPCProtocol pt1 - class-dump-swift

Interesting

INTERNAL

Interesting

XPCProtocol pt2 - class-dump-swift

INTERNAL

x86_64
arm-64

installZCC

path?

installRevertZCC

INTERNAL

installZCC
arg2 + /Contents/MacOS/installbuilder.sh

runCommandToShell
& result

Nice debug output

INTERNAL

Custom client: NSXPCConnection

1. Call initWithMachServiceName

2. interfaceWithProtocol
@protocol(XPCProtocol)

3. Set up ObjectProxy on the connection

4. Test connection with
getVersionWithReply

5. Send "/tmp" where exploit script was
placed

INTERNAL

go.sh:
creates bash script at
/tmp/Contents/MacOS/
installbuilder.sh

compiles & performs
DYLD_INSERT_LIBRARIES
injection

Calls installRevertZCC

Reads the results

INTERNAL

Dangerous assumption [1]
Assuming we (an attacker) can't load code into an Zscaler signed Mach-O and talk
to the XPC service

INTERNAL

CVE-2024-30165:
AWS VPN 3.9.0 Local Privilege
Escalation

Local Privilege Escalation via a lack of XPC client verification on
connections to a root LaunchDaemon which facilitated
uninstallation and script execution from no-longer existing
directory paths

INTERNAL

• The AWS VPN is a fancy wrapper around a custom openvpn

• The PrivilegedHelperTool (launchd XPC service) allows for a "Daemon" to run as
root and facilitates the low privileged user to request actions to be carried out
with root privileges

• e.g.
o turn on/off the VPN
o Fix DNS settings
o Reset DNS settings
o Etc....

• Empowers the user

AWS Client VPN?

INTERNAL

C XPC Services API
"xpc_" prefix functions
imported

xpc_connection_create_mach_service

"xpc_*_get" functions

INTERNAL

No client verification?

XPC service
creation using C
API

INTERNAL

"request":"fix_dns"

"request":"uninstall"

"request":"restore_dns"

INTERNAL

INTERNAL

fixDns

/Applications/

INTERNAL

restoreDns

/Applications/

INTERNAL

/Applications/AWS VPN Client/*.app

/Applications/AWS VPN Client

uninstallApplication

INTERNAL

Set request string to be "uninstall"

Create empty XPC dictionary

Connect to
"com.amazonaws.acvc.helper"

Set event handler

LPE pt1

INTERNAL

Send the "uninstall" message

Create exploit directory using
"admin" group membership

Create exploit script

Setting up Mach XPC
dictionary "fix_dns"

Send "fix_dns" Mach
message

LPE pt2

INTERNAL

Oopsie !

root

INTERNAL

Dangerous assumption [2]
Assuming we (an attacker) won’t just connect and call XPC functions

INTERNAL

The fix

• Identifier check ✅

• Signing cert check ✅

• Does not use PID ✅

• Rejects if fail ✅

• lgtm, gg AWS ✅

https://emojipedia.org/check-mark-button
https://emojipedia.org/check-mark-button
https://emojipedia.org/check-mark-button
https://emojipedia.org/check-mark-button
https://emojipedia.org/check-mark-button

INTERNAL

CVE-2024-27358:
WithSecure Elements / MDR
Installer LPE

Assumptions placed on paths during the install or update process which
facilitates an attacker who has planted a malicious Mach-O to achieve
root code execution

INTERNAL

Installers

https://files.speakerdeck.com/presentations/6bd02a9ee4e744908e24c72945ac3bba/DefCon_2017.pdf

INTERNAL

Installers

.pkg installers: .app installers:

Needs to be "Installed" Can run directly

preinstall & postinstall scripts "Drag and Drop" install

Typically, elevated installs Can be elevated but often not

The path environment variable is locked down due
to PackageKit (No /usr/local/*)

Path environment variable often includes
(/usr/local/bin) (Source for search path logic bugs)

INTERNAL

INTERNAL

Initialize uninstaller_path to an empty string

Iterates over a list of paths to find the
first instance of an uninstaller binary

/Applications/F-Secure/uninstall

preinstall.sh

INTERNAL

Checks uninstaller_path variable

It then executes the identified path
as root

INTERNAL

• QoL setup stages

• Create /Applications/F-Secure

• Create "uninstall" binary

• Execute the installer to simulate

INTERNAL

INTERNAL

INTERNAL

w00t

INTERNAL

Dangerous assumption [3]
Assuming we (an attacker) doesn’t have control over a Mach-O in a non-root
writable location

INTERNAL

Misc Logic Bugs:
“Unexploitable” logic bugs

A collection of miscellaneous “unexploitable” logic bugs that could be
leveraged as exploit primitives to be chained together as part of an
exploit chain

INTERNAL

1. Admin By Request
Logic bug in their XPC verification

INTERNAL

shouldAcceptNewConnection – No client
verification?

INTERNAL

startListener – Oh, there it is... or is it?

INTERNAL

INTERNAL https://developer.apple.com/documentation/technotes/tn3127-inside-code-signing-requirements

The code was signed by Apple as
Apple code.

Any code signed with any code
signing identity issued by Apple.

"or" ????

TeamIdentifier

INTERNAL

A bypass?

INTERNAL

Breaking assumptions

INTERNAL

What can you do with this?

INTERNAL

Dangerous assumption [4]
Assuming that they have adequately checked their NSXPC client.

INTERNAL

2. AWS Client VPN
Logic bug in their path checking functionality

INTERNAL

isSymbolicLink

Check the LSB of the result (decompiler artefacts)
NSFileTypeSymbolicLink

INTERNAL

_startOvpn

isSymbolicLink

isSymbolicLink

INTERNAL

_getValidConfigPath

isSymbolicLink

isSymbolicLink

INTERNAL

Get attributes of target

Check if equal to
NSFileTypeSymbolicLink

Copy behavior of
decompiled logic

INTERNAL

INTERNAL

Dangerous assumption [5]
If they have adequately checked for filesystem redirection attacks.

• symlinks are NSFileTypeSymbolicLink

• hardlinks are NSFileTypeRegular

INTERNAL

• Don't waste your time with bug bounty platforms – You will get scammed

• 90 + 30-day googleprojectzero rule

• Resist requests to go via bug bounty sites if you want to own the bug

• Logic Bugs are everywhere, some more useful than others

• Assumptions are made to be broken

• Computa go brr

Takeaways?

INTERNAL

Never ASSUME
It makes an ASS out of U and ME

INTERNAL

• Csaba Fitzl (@theevilbit) - Providing training [EXP-312] & Publishing great research

• Wojciech Reguła (@_r3ggi) – Worked with Csaba on the Exploiting XPC in AntiVirus Software
presentation

• Jonas Lykkegård (@jonaslyk) - Mentoring + developing my break things mindset

• Mickey Jin (@patch1t) - Inspiring with cool bugs

• WithSecure (@WithSecure) - Providing research time and training budget

• WithSecure Labs (@withsecurelabs) - A platform to publish research

Giving credit where credit is due

INTERNAL

INTERNAL

Go and find some bugs !

