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• Introduction: who?, when?, what?, why? 

• CVE-2024-?????: ZCC NSXPC LPE macOS

• CVE-2024-30165: AWS VPN XPC LPE macOS

• CVE-2024-27358: WithSecure Elements / MDR Installer LPE

• “Unexploitable” Logic Bugs: Two miscellaneous logic bugs

Agenda
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• Security Consultant at WithSecure 
- My opinions are my own and don’t represent my employers

• OS Security, Build Reviews, Thick Clients, Compiled Software, 
Code Review, AppSec, Reverse Engineering, Logic Bugs, Tool 
Development...

•  OSMR, CRTO, OSCP, CPSA, S7, OST2… 

• x33fcon, BSides, DC4420...

• Did some bug hunting, found some bugs

Who?
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When?
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WithSecure™ Labs

https://labs.withsecure.com/vulnerability-disclosure-policy
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What is a "logic bug"

Its all about breaking assumptions



INTERNAL

What?
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• High exploit reliability

• Trust on processes and procedures

• Breaking unverified assumptions

• E.g.
• Redirect privileged file operations
• Bypassing symlink checks with hardlinks
• Assuming a client app to a privileged component is the intended app
• Executing Mach-Os / Scripts at an assumed safe path
• Changing permissions at an assumed safe path
• Deleting / Creating files at an assumed safe path

• "Oh, we can assume that this file exists" or "Oh, the client is going to be trusted, its signed by us!"

Logic Bugs?
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• These bugs still exist 

• People often show the bug but not the process

• Story / walkthrough of how I identified and exploited the bugs 

• How to build a methodology / automate steps 

• Responsible Disclosure process is a little grey 

Why?
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CVE-2024-?????: 
ZCC Local Privilege Escalation

A weakness in one of the signed components which facilitated 
dylib injection and communication with a protected NSXPC 
LaunchDaemon. LPE in the form of root code execution was 
achieved through abuse of an install / update function exposed by 
the NSXPC service. 
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• Zscaler Client Connector for 3rd party non-managed devices

• Posture Policies (won’t cover these) 

• 5 days on Windows, 5 days on macOS

• PoCs, risk demonstrated, extra time to do some vulnerability research on the targets 

• Couple of macOS components rang alarm bells

• Found some bugs (will cover one of the LPEs) 

It all started with a client project
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Identify processes 
& their privileges

Identify LaunchDaemons

Investigate LaunchDaemons
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MachServices:
the launchd job can use XPC (either the 
low-level C API or NSXPCConnection) to 
listen for connections to that service.

ProgramArguments:
The actual daemon itself, handles 

com.zscaler.service
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MachServices:
the launchd job can use XPC (either the 
low-level C API or NSXPCConnection) to 
listen for connections to that service.

ProgramArguments:
The actual daemon itself, handles 

com.zscaler.tunnel
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• TL;DR you can't just run unsigned code in signed processes if SIP is enabled

• No dylib planting/sideloading whatever you want to call it

• No attaching a debugger 

• Unless…they disable security features on executables 

• Or…through "vulnerable" entitlements

Quick intermission to talk about SIP

https://developer.apple.com/documentation/bundleresources/entitlements
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Nothing of real interest :/ 

Nothing of real interest :/ 
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com.apple.security.cs.allow-dyld-environment-variables

com.apple.security.cs.disable-library-validation

Identifier=com.zscaler.tunnel
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Automation is our friend, saves us 
time / repeating activities

Can use YARA to scan for Mach-Os 
and strings in found Mach-Os 
which relate to entitlements
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[NS]XPC – Dividing privilege levels

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html
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[NS]XPC – Learn to talk before you can walk

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html
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Connecting

Custom client: NSXPCConnection

1. Call initWithMachServiceName

2. interfaceWithProtocol ?

What do we connect to?

ZscalerService: NSXPCListener

com.zscaler.service-tray-communication
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ZscalerService shouldAcceptNewConnection

com.zscaler.tunnel:
TunnelXPCProtocol
XPCProtocol

com.zscaler.zscaler:
TrayXPCProtocol
XPCProtocol

com.zscaler.zscaler.pktfilter
FilterXPCProtocol
XPCProtocol
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class-dump bug ?

???

???

???
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???

???

???
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Interesting

TunnelXPCProtocol – class-dump-swift
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XPCProtocol pt1 - class-dump-swift

Interesting
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Interesting

XPCProtocol pt2 - class-dump-swift
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x86_64
arm-64

installZCC

path?

installRevertZCC
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installZCC
arg2 + /Contents/MacOS/installbuilder.sh

runCommandToShell
& result

Nice debug output
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Custom client: NSXPCConnection

1. Call initWithMachServiceName

2. interfaceWithProtocol
@protocol(XPCProtocol)

3. Set up ObjectProxy on the connection

4. Test connection with 
getVersionWithReply

5. Send "/tmp" where exploit script was 
placed
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go.sh:
creates bash script at 
/tmp/Contents/MacOS/
installbuilder.sh

compiles & performs 
DYLD_INSERT_LIBRARIES
injection

Calls installRevertZCC

Reads the results 



INTERNAL

Dangerous assumption [1]
Assuming we (an attacker) can't load code into an Zscaler signed Mach-O and talk 
to the XPC service
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CVE-2024-30165:
AWS VPN 3.9.0 Local Privilege 
Escalation

Local Privilege Escalation via a lack of XPC client verification on 
connections to a root LaunchDaemon which facilitated 
uninstallation and script execution from no-longer existing 
directory paths
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• The AWS VPN is a fancy wrapper around a custom openvpn

• The PrivilegedHelperTool (launchd XPC service) allows for a "Daemon" to run as 
root and facilitates the low privileged user to request actions to be carried out 
with root privileges

• e.g.
o turn on/off the VPN
o Fix DNS settings
o Reset DNS settings
o Etc....

• Empowers the user 

AWS Client VPN?
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C XPC Services API
"xpc_" prefix functions 
imported

xpc_connection_create_mach_service

"xpc_*_get" functions
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No client verification?

XPC service 
creation using C 
API 
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"request":"fix_dns"

"request":"uninstall"

"request":"restore_dns"



INTERNAL



INTERNAL

fixDns

/Applications/
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restoreDns

/Applications/
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/Applications/AWS VPN Client/*.app

/Applications/AWS VPN Client

uninstallApplication
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Set request string to be "uninstall"

Create empty XPC dictionary

Connect to 
"com.amazonaws.acvc.helper"

Set event handler

LPE pt1
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Send the "uninstall" message

Create exploit directory using 
"admin" group membership

Create exploit script 

Setting up Mach XPC 
dictionary "fix_dns"

Send "fix_dns" Mach 
message

LPE pt2
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Oopsie !

root
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Dangerous assumption [2]
Assuming we (an attacker) won’t just connect and call XPC functions
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The fix 

• Identifier check ✅

• Signing cert check ✅

• Does not use PID ✅

• Rejects if fail ✅

• lgtm, gg AWS ✅

https://emojipedia.org/check-mark-button
https://emojipedia.org/check-mark-button
https://emojipedia.org/check-mark-button
https://emojipedia.org/check-mark-button
https://emojipedia.org/check-mark-button
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CVE-2024-27358:
WithSecure Elements / MDR 
Installer LPE

Assumptions placed on paths during the install or update process which 
facilitates an attacker who has planted a malicious Mach-O to achieve 
root code execution
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Installers

https://files.speakerdeck.com/presentations/6bd02a9ee4e744908e24c72945ac3bba/DefCon_2017.pdf
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Installers

.pkg installers: .app installers:

Needs to be "Installed" Can run directly

preinstall & postinstall scripts "Drag and Drop" install

Typically, elevated installs Can be elevated but often not

The path environment variable is locked down due 
to PackageKit (No /usr/local/*)

Path environment variable often includes 
(/usr/local/bin) (Source for search path logic bugs)
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Initialize uninstaller_path to an empty string

Iterates over a list of paths to find the 
first instance of an uninstaller binary 

/Applications/F-Secure/uninstall

preinstall.sh
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Checks uninstaller_path variable

It then executes the identified path 
as root
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• QoL setup stages 

• Create /Applications/F-Secure

• Create "uninstall" binary

• Execute the installer to simulate 
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w00t
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Dangerous assumption [3]
Assuming we (an attacker) doesn’t have control over a Mach-O in a non-root 
writable location
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Misc Logic Bugs:
“Unexploitable” logic bugs

A collection of miscellaneous “unexploitable” logic bugs that could be 
leveraged as exploit primitives to be chained together as part of an 
exploit chain
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1. Admin By Request
Logic bug in their XPC verification
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shouldAcceptNewConnection – No client 
verification?
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startListener – Oh, there it is... or is it?
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INTERNAL https://developer.apple.com/documentation/technotes/tn3127-inside-code-signing-requirements

The code was signed by Apple as 
Apple code.

Any code signed with any code 
signing identity issued by Apple.

"or" ????

TeamIdentifier 
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A bypass?



INTERNAL

Breaking assumptions
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What can you do with this?
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Dangerous assumption [4]
Assuming that they have adequately checked their NSXPC client.
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2. AWS Client VPN
Logic bug in their path checking functionality



INTERNAL

isSymbolicLink

Check the LSB of the result (decompiler artefacts)
NSFileTypeSymbolicLink
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_startOvpn

isSymbolicLink

isSymbolicLink
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_getValidConfigPath

isSymbolicLink

isSymbolicLink
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Get attributes of target

Check if equal to 
NSFileTypeSymbolicLink

Copy behavior of 
decompiled logic
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Dangerous assumption [5]
If they have adequately checked for filesystem redirection attacks.

• symlinks are NSFileTypeSymbolicLink

• hardlinks are NSFileTypeRegular
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• Don't waste your time with bug bounty platforms – You will get scammed

• 90 + 30-day googleprojectzero rule

• Resist requests to go via bug bounty sites if you want to own the bug 

• Logic Bugs are everywhere, some more useful than others

• Assumptions are made to be broken

• Computa go brr

Takeaways?
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Never ASSUME
It makes an ASS out of U and ME
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• Csaba Fitzl (@theevilbit) - Providing training [EXP-312] & Publishing great research

• Wojciech Reguła (@_r3ggi) – Worked with Csaba on the Exploiting XPC in AntiVirus Software 
presentation

• Jonas Lykkegård (@jonaslyk) - Mentoring + developing my break things mindset

• Mickey Jin (@patch1t) - Inspiring with cool bugs

• WithSecure (@WithSecure) - Providing research time and training budget

• WithSecure Labs (@withsecurelabs) - A platform to publish research 

Giving credit where credit is due
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Go and find some bugs !


